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Open competition - solutions

Problem 1

Let M be the set of finite lists consisting only of the −1s, 0s and 1s. Say that a function F : M →
{−1, 0, 1} is amayzing if it satisfies:

(a) F (x) = F (y) for all x, y such that y is a permutation of x.

(b) F (x) = −F (y) for all x, y such that y = −x (i.e. yi = −xi for all i).

(c) if F (x) ∈ {0, 1} and we can get y by increasing some number in x, then F (y) = 1.

Determine all amayzing functions.

Solution

Note that:

• If x has the same number of 1s and −1s: F (x)
(a)
= F (−x)

(b)
= −F (x) =⇒ F (x) = 0

• If x has more 1s than −1s, there is some x0 with the same number of 1s and −1s (giving
F (x0) = 0 by above) for which we can increase some entries in x0 to get x, giving that
F (x) = 1 by (c)

• Finally if x has less 1s than −1s, (b) together with the previous observation gives F (x) = −1

Hence any amayzing F has to be

F (x) =


−1, if x has more −1s than 1s

0, if x the same number of −1s and 1s

x, if x has more 1s than −1s)

and it’s clear that all such F satisfy all the requirements.

Remark: This problem is essentially just about proving May’s theorem.
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Problem 2

Sofia and her friends live in a city consisting of n > 1 parks, some pairs of which are connected
by a street. It takes one minute of bike between any pair of parks connected by a street. Fur-
thermore, it’s possible to get between any pair of parks using the streets. Sofia’s friends all live
next to a park that is only connected to the rest of the parks by exactly one street. No two of her
friends live next to the same park. Now Sofia wants to arrange a picnic in one of the parks, such

that the total time it takes for all her friends to get there is at most (n+1)2

8 . Show that this is possible.

Solution 1

Consider the problem as a graph. Since having more edges can only decrease the travel time, it’s
enough to consider trees.

Assume that the longest path in the tree has length k, and assume that a0, ..., ak is such a path.
Removing all those nodes would split the remaining nodes into some number of smaller trees, each
of which was originally attached to some ai. We say that such a tree is a subtree of ai. Assume
wlog that the total number of friends in the subtrees of a0, ..., a⌊k/2⌋ is at least as large as the cor-
responding quantity for a⌈k/2⌉, ..., ak. Put the picnic in the node a⌊k/2⌋.

a0 a1 a⌊k/2⌋ akak−1a2

≥ half the friends

subtrees of a2

picnic node

Consider a leaf node u (which contains a friend), other than a0 or ak, and assume it’s in a subtree
of ai for some i ≤ ⌊k/2⌋. The paths from ak to both a0 and u must then pass through a⌊k/2⌋. Since
the distance from ak to a0 is maximal we hence get that d(a0, a⌊k/2⌋) ≥ d(u, a⌊k/2⌋) (where d(x, y) =
distance from x to y). So moving all such leaf nodes to instead be attached to a1 will not decrease
the sum of the distances from them to a⌊k/2⌋. For leaf nodes u which are in a subtree of ai for some
i > ⌊k/2⌋, we similarly get that d(ak, a⌊k/2⌋) ≥ d(u, a⌊k/2⌋), so moving them to instead be attached
to ak−1 will not decrease the sum of the distances from them to a⌊k/2⌋.

a0
a1

a⌊k/2⌋ akak−1

a2

u

ai

d(ak, a0) = d(ak, a⌊k/2⌋) + d(a⌊k/2⌋, a0)

d(ak, u) = d(ak, a⌊k/2⌋) + d(a⌊k/2⌋, u)

We have now moved all nodes with friends so they are attached to a1 or ak−1, and want to show

that the sum of the distances from them to a⌊k/2⌋ is at most (n+1)2

8 (then we’ll be done, as the
distance has not decreased when we moved things around above). It is clear that we can assume
that there are no other nodes than the leaves with friends and the nodes on the path a0, ..., ak, since
that would just increase n without changing the travel time. In other words we have reduced the
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problem to just considering graphs which look as follows:

a0
a1

a⌊k/2⌋
ak

ak−1a2

picnic node

f friends g friends

Note that we assumed (wlog) in the beginning that there were at least as many friends in the sub-
trees of a1, ..., a⌊k/2⌋ as in the remaining subtrees. This now translates to there being at least as
many leaves attached to a1 as to ak−1, i.e f ≥ g where f is the number of leaves attached to a1
and g is the number of leaves attached to ak−1. Since a⌊k/2⌋ is at least as close to a1 as to ak−1, we
can move friends to attach to ak−1 instead, until the number of friends on each side is the same (or
differ by at most 1 if the number of friends is odd), only making our situation worse. So we only
need to consider the cases g = f and g = f − 1. We now consider them separately.

Case 1: If g = f , we have n = 2g + k − 1 and the total distance from a⌊k/2⌋ to the leaves is

gk =
1

2
2f(n− 2g + 1) ≤ (n+ 1)2

8

where we use AM-GM on 2g, n− 2g + 1 in the last step.

Case 2: If g = f − 1, we have n = 2g + k and the total distance from a⌊k/2⌋ to the leaves is

gk + ⌊k/2⌋ ≤ 1

2
(2g + 1)k =

1

2
(2g + 1)(n− 2g) ≤ (n+ 1)2

8

where we use AM-GM on 2g + 1, n− 2g in the last step.

We are hence done.

Solution 2

Consider the problem as a graph. Since having more edges can only decrease the travel time, it’s
enough to consider trees. Let the optimal node for the picnic be v, and root the tree there. Say
that v has m subtrees T1, ..., Tm. We want to show that the sum of the distances from v to all the

friends is at most (n+1)2

8 . We will do this by keeping v fixed while moving the other nodes around a
bit, only ever increasing the total distance to v from all the friends, until we have a graph for which
it is easy to compute the total distance.

T1

T2

Tm

v

If any subtree Ti contained more than half of the friends, it would be strictly better to move the
picnic one step towards the friends in that tree (as the travel distance would decrease by 1 for more
than half the friends, and increase by 1 for less than half). Hence each Ti contains at most half of
the friends, as v was picked to be an optimal node.

Consider the subtree Ti. Let d be largest distance from v to any node in Ti, and assume that the
node u is at this distance from v. Clearly u is only connected to one node, say w, because otherwise
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there would be some node which is further from v. Now assume that there is some other leaf u′ in
Ti which is at distance d′ ≤ d from v. Moving u′ to instead be connected to w would cause it to be
distance d from v, leaving all other distances to v unchanged. Hence if u′ doesn’t contain a friend,
the sum of the distances from the friends to v will be unchanged, whereas if u′ did contain a friend,
it will increase by d− d′. If we can show that the sum of the distances to v in this modified graph

is at most (n+1)2

8 , we will hence be done.

Ti

v

u

w

u′

d

d′ ≤ d

Repeating the above process will create a tree rooted at v where each of the subtrees Ti consists of
a path of length li ending at a node wi, with ai leaves attached to wi at the end, as in the picture
below. Note that we only ever moved nodes within the subtrees, so the observation that each Ti

contains at most half the friends is still valid. Also note that at this point, we may as well assume
that every leaf contains a friend, as if we can do that case we can do every case.

v

picnic node

l1

l2w1

w2

lm

wm

a1

a2

am

We can further modify the tree by noting that given two subtrees Ti and Tj such that li > lj , moving
a leaf from Tj to Ti will increase the total travel distance to v by li− lj (as all leaves contain friends).
If we assume wlog that T1 and T2 are the trees with the longest paths l1, l2, noting that they start
out each containing at most half of the friends, we may move leaves from the other subtrees to these

trees until they contain exactly
⌊
f
2

⌋
leaves each, while only increasing the total travel time to v

(where f is the total number of friends). Note that if f is even, this leaves no friends at the other
subtrees, so we may remove those subtrees entirely (making n smaller and hence making it more
difficult to prove the bound). If f is odd however, we might still have one friend left at the bottom
of some other subtree. By making the path to that leftover friend shorter and the path in either
T1 or T2 longer, we increase the total travel time, so in that case we may assume that the leftover
friend is distance 1 from v. (Note that we may have started out with some friends being in subtrees
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with paths of length 0, which corresponds to them being distance 1 from v - if this is the case we

can think of it as
⌊
f
2

⌋
of those nodes being the leaves of one subtree with a path of length 0). We

have now reduced the problem to the same two cases as in solution 1, so we are done by the same
calculations that we performed there.
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Problem 3

The polynomial x4−16x3+88x2−190x+128 has four positive roots. We draw a cyclic quadrilateral
with these roots as side lengths (it is given that this is possible). What is the area of the quadrilateral?

Solution

Denote the polynmoial by f(x). It’s given that the polynomial has four positive roots, say a, b, c, d.
By Vieta’s formulas, we have p = a+b+c+d

2 = 8. Hence by Brahmagupta’s formula for the area of a
cyclic quadrilateral, we get that the answer is√

(p− a)(p− b)(p− c)(p− d) =
√
f(8) = 12
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Problem 4

Determine all functions f : Z+ \ {1} → Z+ such that

ϕ(2mf(n)) = f(ϕ(2n)m)

for all positive integers m and n ̸= 1. Note that ϕ is Euler’s totient function.

Remark: Before starting the main solution, we will state some well-known facts without proof.

Fact 1: ϕ(mn) = ϕ(m)ϕ(n) for all m,n which are coprime

Fact 2: ϕ(n) = n
∏(

1− 1
p

)
where the product is over primes p dividing n

Note that the second one follows from the first one, together with the fact that ϕ(pα) = (p− 1)pα−1

for all primes p and α ≥ 1 (this is easy to check directly).

Solution

We start by making two observations:

Obs 1 For all n > 2, ϕ(n) is even. This can be seen either by fact 2 above, or by noting that k < n
is coprime to n if and only if n− k is coprime to n (and for n > 2 it’s clear that n

2 is never
coprime to n). In particular, if n > 1 is odd then ϕ(n) is even.

Obs 2 If n is divisible by p, we have that ϕ(pn) = pϕ(n). This follows from fact 2 above.

We claim that for every integer α ≥ 0

f(n) =

{
2αϕ(n) if n is even

2α−1ϕ(n) if n is odd

is a solution, and that it’s all of them. Note that 2α−1ϕ(n) is an integer by observation 1.

Checking that these are solutions: We note that (using ϕ(n) divisible by 2 in the odd case)

LHS =

ϕ(2α+1m ϕ(n))
(obs 2)
= 2αϕ(2m ϕ(n))

(obs 2)
= 2αϕ(m ϕ(2n)) if n is even

ϕ(2αm ϕ(n))
(obs 2)
= 2αϕ(m ϕ(n))

(fact 1)
= 2αϕ(m ϕ(2n)) if n is odd

But this is exactly the same as the RHS, using that ϕ(2n) is even by observation 1.

Showing that these are all solutions: Let f(2) = 2αc, where c is odd. Put m = 1, n = 2:

ϕ(2α+1c) = ϕ(2f(2))
(by assumption)

= f(ϕ(4)) = f(2) = 2αc =⇒ ϕ(c) = c =⇒ c = 1

where we have used that c is odd, fact 1 and that ϕ(2α+1) = 2α in the first implication.

Put n = 2 =⇒ f(2m) = ϕ(2α+1m)
(obs 2)
= 2αϕ(2m) using f(2) = 2α, giving the claim for even inputs.

For odd n, put m = ϕ(n)f(n), to get

ϕ(2ϕ(n)f(n)2) = f(ϕ(2n)ϕ(n)f(n)) = f(ϕ(n)2f(n))

where we used in the second step that ϕ(2n) = ϕ(n) since n is odd. Since n > 2, observation 1
gives ϕ(n) even so the input to f on the RHS is even, so RHS is equal to 2αϕ(ϕ(n)2f(n)) using the
formula for f for even inputs from above. Hence we have

ϕ(2ϕ(n)f(n)2) = 2αϕ(ϕ(n)2f(n))

Now observation 2 gives

LHS = 2f(n)ϕ(ϕ(n)f(n)) RHS = 2αϕ(n)ϕ(ϕ(n)f(n))

using that 2f(n)
∣∣ ϕ(n)f(n) for the LHS and ϕ(n)

∣∣ ϕ(n) for the RHS (noting again that ϕ(n) is
even). We simplify to get

f(n) = 2α−1ϕ(n)

for all odd n. So we are done.
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Problem 5

Let the integers be coloured with infinitely many colours. We say that a rational (m × n)−matrix
A is interesting if for every i = 1, 2, ..., n there is a solution to Ax = 0 such that xi ̸= 0. Fur-
thermore, we say that A is good for the colour c, if Ax = 0 has a solution x ∈ Zn such that all xi

have the colour c. Is it possible that all intersting matrices are good for all (infinitely many) colours?

Solution 1

The answer is yes. Let us construct a colouring with infinitely many colours for which all interesting
matrices are good for all colours.

Given an interesting (m × n)−matrix A, consider the kernel K = {v ∈ Qn : Av = 0}. We claim
that K contains some vector v ∈ Qn such that vi ̸= 0 for all i. Indeed, assume this was not the
case, and pick a vector v ∈ K such that v1, ..., vi−1 ̸= 0 but vi = 0, where i is chosen to be the
largest coordinate for which this is possible to achieve. Let w ∈ K be such that wi ̸= 0 (this exists
since A is interesting). Clearly av + w ∈ K for all a ∈ Q, and hence picking a ̸∈ {−wj/vj : j < i}
we get that (av + w)j = avj + wj ̸= 0 for j < i. But also (av + w)i = wi ̸= 0, so we arrived at a
contradiction since we found a vector in K such that none of the coordinates 1, 2, ..., i are zero.

Let the number of colours be countably infinite. We want to show that the number of pairs of an
interesting matrix and a colour is countable. Note that:

• There are countably many rational matrices of size m×n (each matrix has mn rational entries,
so we can clearly inject the set into Z2mn by sending each entry to a pair of integers, and then
we can inject this set into Q - which is countable - for example by sending (k1, ..., k2mn) 7→
pk1
1 · ... · pk2mn

2mn where p1, ..., p2mn are distinct primes).

• The set of possible sizes of matrices is countable (similar reason to before).

• Combining the above two observations, we see that the number of rational matrices is a
countable union of countable sets, which is hence countable (it clearly injects into N2 which is
countable by similar reasoning to before). Hence there are clearly countably many interesting
matrices, since that’s a subset of all rational matrices.

• Finally, this gives that number of pairs of an interesting matrix and a colour is countable
(similar reason to before).

Say that all such pairs of an interesting matrix and a colour are (A1, c1), (A2, c2), ....

Let us now inductively define a colouring of Z such that all interesting matrices are good for all
colours. Assume that we have a partial colouring where finitely many numbers a1, ..., am have been
coloured so far, such that we already know that Ai is good for ci for all i up to k − 1. By above,
Ak has some solution v such that vi ̸= 0 for all i. Since cv is a also a solution for all c ∈ Z, we can
assume that v has integer entries (by picking c to be the product of all denominators). Furthermore,
by then picking c > max{|a1|, ..., |am|}, we can ensure that there is a solution cv to Ak with all
entries having larger absolute value than any number coloured so far. But then we can extend the
colouring by letting all those entries be coloured with ck. This ensures that Ak is good for the colour
ck. Finally, we colour k and −k with an arbitrary colour if they have not yet been coloured, to
ensure that we eventually give every colour a number, before we continue the induction.

The above described process will define a colouring of all of Z for which every interesting matrix is
good for every colour. Hence we are done.

Solution 2

Let f(n) be the largest prime dividing |n|. Note that we can partition the primes into infinitely
many infinite sets P1, P2, ... (since there is a bijection between N2 and the primes). Now if f(n) ∈ Pk,
we give n the colour k. As in solution 1, we know that every interesting matrix A has a solution
v such that vi ̸= 0 for all i. Then for every c ∈ Z, we have that cv also solves A. But then for all
sufficiently large primes p, we can pick c such that cv has integer entries, and such that f((cv)i) = p
for all i. Then the colour of all (cv)i are k, where p ∈ Pk. Since every Pk contains arbitrarily large
primes, we can make sure that every entry of cv has colour k for any colour k. Hence we are done.
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Problem 6

Prove that the sum of the blue areas is equal to the sum of the red areas. The figure is a circle and
the points are evenly spaced.

Solution 1

In the left figure below, four (overlapping) pieces of the circle have been coloured in four different
colours, that have then been rearranged in the right figure to exactly cover the entire circle without
overlap. Note that:

• red areas in the original figure (see problem statement above) correspond exactly to those
areas where the pieces in the left figure below overlap

• blue areas in the original figure (see problem statement above) correspond exactly to those
areas in the left figure below that are not covered at all

But the overlapping areas and the uncovered areas in the left figure must have the same area, since
the 4 pieces together have the exact same area as the circle. Hence we are done.

Solution 2

We get a different solution by ”cutting and gluing”, as in the four figures below. Since the red and
the blue piece are the same size in the last picture, they must have been the same size from the
start.

Fig 1 Move the dark blue piece in the top right along the arrow.

Fig 2 The dark red and dark blue pieces are the same size, so can be removed.

Fig 3 The dark red pieces are the same sizes are the dark blue pieces, so can add them all.

Fig 4 The dark red and dark blue piece are the same size, so can be removed.
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Solution 3

It’s also possible to solve the problem by simply computing the areas (or by combining some in-
sights from solution 2 with computing the remaining areas). We will show here how to compute
the area of the large blue triangle and the large red rectangle in two different ways (by expressing
the coordinates with trigonometry, and by computing some lengths and angles), and hence show
that they are the same size. Together with the observation in figure 1 och figure 2 from solution
2 this will give a complete solution, but it’s also possible to use the methods here to compute all areas.

In the figure on the left the points have
been named P1, ..., P12, the center of the
circle O, and some of the intersections in
the circle X,Y, Z and W . Furthermore
we have placed the figure in a coordinate
system where O is the origin, and the
axes have been drawn such that they are
parallel to P1P6 and P4P9 respectively. We
may assume that the figure has been scaled
such that the radius of the circle is 1, so it
is the unit circle. The angle between OPi

and the x−axis has been written out for
P1, ..., P12.

We have also constructed two additional
points: P ′

1 is the reflection of P1 in X, and
M is the midpoint of P2P10.

Trigonometric solution: The coordinates for the points Pi and X,Y, Z are (all angles in degrees):

• Pi : (cos(30i− 15), sin(30i− 15)), by the definition of cosine and sine

• X : (cos(75), sin(15)) (the x−value is the same as for P3, the y−value is the same as for P1)

• Y : (cos(75), sin(45)) (the x−value is the same as for P3 the y−value is the same as for P2)

• Z : (cos(135), sin(15)) (the x−value is the same as for P5, the y−value is the same as for P1)

Hence the blue triangle has area (using that P1X is perpendicular to P10X)

|P1X| · |P10X|
2

=
(cos(15)− cos(75)) · (sin(15)− sin(285))

2

=
(cos(15)− sin(15)) · (sin(15) + cos(15))

2

=
cos2(15)− sin2(15)

2

=
1− 2 sin2(15)

2
=

1

2
− sin2(15)

where we used that sin(285) = −cos(15) and that cos(75) = sin(15) in the first step, factorisation of
difference of two squares in the second step and the trigonometric formula sin2(x) + cos2(x) = 1 in
the last step. The red rectangle has area (using that XZ is perpendicular to XY )

|XY | · |XZ| = (sin(45)− sin(15)) · (cos(75)− cos(135))

= (
1√
2
− sin(15)) · (sin(15) + 1√

2
)

=
1

2
− sin2(15)

where we used that cos(75) = sin(15) and that sin(45) = cos(45) = 1√
2
in the first step. Hence the

red rectangle and the blue triangle have the same area. We can show that the remaining areas are
also the same for red and blue (by similar computations or by the observations from solution 2).
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Solution by computing lengths and angles: We start by computing the area of the blue
triangle. Note that ∠P1OP10 = 90◦, since the arc from P1 to P10 is exactly one fourth of the circle.
Furthermore |P1O| = |P10O| = 1 since both are radii in the circle, so Pythagoras’ theorem gives
that |P1P10| =

√
12 + 12 =

√
2. Note that

∠XP1P10 = ∠P6P1P10 =
285◦ − 165◦

2
= 60◦

by the inscribed angle theorem. This gives

|P1X| = |P1P10|
2

=
1√
2

|P10X| =
√
|P1P10|2 − |P1X|2 =

√
3

2

using that P1XP10 is a triangle with angles 30◦, 60◦, 90◦. Hence the area of the blue triangle is

|P1X| · |P10X|
2

=

√
3

4

We now compute the area of the red rectangle. Note that |P2Y | = |P5Z| = |XY | by symmetry,

say that they are all equal to t. Furthermore |P2P10|
2 = |P2M | =

√
3
2 since OMP2 is a triangle with

angles 30◦, 60◦, 90◦. We already know that |P10X| =
√

3
2 , so Pythagoras’ theorem in the triangle

P2Y P10 now gives that(√
3

2
+ t

)2

+ t2 = (
√
3)2 = 3 =⇒ 2t2 +

√
6t+

3

2
= 3 =⇒ t =

−
√
3 + 3

2
√
2

where we solve a quadratic in the last step. Furthermore |P2P5| = |P1P10| =
√
2 by symmetry (we

computed |P1P10| earlier), so we now get

|P5Y | = |P5P2| − |P2Y | =
√
2− −

√
3 + 3

2
√
2

=
1 +

√
3

2
√
2

where we use that |P2Y | = t = −
√
3+3

2
√
2

. Hence the area of the red rectangle is

|P5Y | · |XY | = 1 +
√
3

2
√
2

· −
√
3 + 3

2
√
2

=
−
√
3 + 3− 3 + 3

√
3

8

=

√
3

4

So the blue triangle and the red rectangle have the same area. We can show that the remaining areas
are also the same for red and blue (by similar computations or by the observations from solution 2).

Remark 1: These two solutions give us a way of computing sin(15) since we now have two ways of
expressing the area of the blue triangle:

1

2
− sin2(15) =

√
3

4
=⇒ sin(15) =

√
2−

√
3

2

It is left as an exercise to the reader to also show that

sin(15) =

√
3− 1

2
√
2

Remark 2: For anyone who has not had enough ways to solve this problem, you are free to try
showing that the blue triangle and the red rectangle have the same area by using that |P2Y | · |P5Y | =
|P3Y | · |P10Y | by the intersecting chords theorem, together with some observations about segments
having the same lengths due to symmetry.
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Problem 7

Determine the smallest positive integer n such that if the numbers 404, 405, ..., n are divided into two
groups, there are always three distinct numbers x, y, z that are in the same group such that x+y = z?

Solution
The answer is 2023. In general we can ask the same question with 404 replaced by m. Then the
answer is n = 5m+ 3, which is what we will show here. We will refer to the two groups as the red
group and the blue group, and think of it as colouring the numbers red and blue.

5m+ 3 works:

Assume for contradiction that 5m+3 doesn’t work, i.e that it’s possible to colour m,m+1, ..., 5m+3
red and blue such that there are no three different numbers x, y, z with the same colour such that
x+ y = z. This gives:

If x ̸= y have the same colour, x+ y must have the other colour. (∗)
If x > y have the same colour, x− y must have the other colour. (∗∗)

We’ll show that these observations lead to a contradiction. Assume that m is red. Have four cases:

Fall 1 Assume that m+1 and m+2 are both red. Then (∗) gives that 2m+1 = m+(m+1) must
be blue. By repeatedly applying (∗) in a similar way we get:

m m+ 1 m+ 2 2m+ 1 2m+ 2 3m+ 2 4m+ 3 5m+ 3

Note that (4m+3)− (m+1) = 3m+2 = (5m+3)− (2m+1). The first equality gives that
3m+2 must be blue, by (∗∗). The second equality gives that 3m+2 must be red, again by
(∗∗). Contradiction.

Fall 2 Assume that m+1 is red and m+2 is blue. In a similar way to before we get from (∗) that:

m m+ 1 m+ 2 2m+ 1 2m+ 2 3m+ 3 4m+ 3

Finally (3m+3)−(m+1) = 2m+2 gives that 2m+2 is blue and (4m+3)−(2m+1) = 2m+2
gives that 2m+ 2 is red, by (∗∗) in both cases. Contradiction.

Fall 3 Assume that m+1 is blue and m+2 is red. In a similar way to before we get from (∗) that:

m m+ 1 m+ 2 2m+ 1 2m+ 2 3m+ 3 4m+ 3

Finally (3m+3)−(m+2) = 2m+1 gives that 2m+1 is blue and (4m+3)−(2m+2) = 2m+1
gives that 2m+ 1 is red, by (∗∗) in both cases. Contradiction.

Fall 4 Assume that m+1 and m+2 are both red. In a similar way to before we get from (∗) that:

m m+ 1 m+ 2 2m+ 1 2m+ 3 3m+ 3 4m+ 4

Finally (3m+3)−(m+2) = 2m+1 gives that 2m+1 is red and (4m+4)−(2m+3) = 2m+1
gives that 2m+ 1 is blue, by (∗∗) in both cases. Contradiction.

In all four cases we derived a contradiction. Hence we have shown that 5m+ 3 works.

5m+ 2 doesn’t work:

Colour m,m+1, ..., 2m and 4m+3, 4m+4, ..., 5m+2 red, while 2m+1, 2m+2, ..., 4m+2 are blue:

m m+ 1 2m 2m+ 1 4m+ 2 4m+ 3 5m+ 1 5m+ 2

If we pick two red numbers x and y, their sum x+ y can’t be red, since:

• If x and y are both between m and 2m, their sum is at least 2m + 1 and at most 4m − 1, so
the sum is guaranteed to be blue.

• Otherwise at least one of x and y is larger than or equal to 4m + 3, but then their sum is at
least 5m+ 3, which is larger than all the numbers we care about.

If we pick two blue numbers x and y, their sum x+ y is at least (2m+ 1) + (2m+ 2) = 4m+ 3, so
it has to be red.

Hence it’s possible to split the numbers m,m+1, ..., 5m+2 in two groups such that no three different
numbers x, y, z with the same colour are such that x+ y = z. So 5m+ 2 doesn’t work.
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Problem 8

Say that a rational number is nice if it is of the form k+1
k for some positive integer k. Given n ∈ N,

does there always exist a sequence of n rational numbers q1, ..., qn such that qiqi+1...qj is a nice
number for all 1 ≤ i ≤ j ≤ n?

Solution

The answer is yes. Let’s guess that the numbers qi are of the form

q1 =
k

k − 1
, q2 =

k − 1

k − c1
, ..., qn−1 =

k − c1...cn−3

k − c1...cn−2
, qn =

k − c1...cn−2

k − c1...cn−1

where k, c1, ..., cn−1 are positive integers and ci > 1 for every i. What do we need for this to work?

• We need that for i = 1 and any j = 1, 2, ..., n, the number q1...qj is nice, i.e. we need that

k

k − c1...cj−1

is nice. This happens if and only if c1...cj−1

∣∣ k for all j = 1, ..., n. So letting k = dc1...cn−1

for some positive integer d, this will be true.

• We need that for 2 ≤ i ≤ j ≤ n, the number qi...qj is nice, i.e. we need that

k − c1...ci−2

k − c1...cj−1
=

k − c1...ci−2

(k − c1...ci−2) + (c1...ci−2 − c1...cj−1)

is nice. This happens if and only if c1...ci−2 − c1...cj−1

∣∣ k − c1...ci−2, which (using that
k = dc1...cn−1) is equivalent to

c1...ci−2(ci−1...cj−1 − 1)
∣∣ c1...ci−2(dci−1...cn−1 − 1)

⇐⇒ ci−1...cj−1 − 1
∣∣ dci−1...cn−1 − 1

⇐⇒ ci−1...cj−1 − 1
∣∣ (ci−1...cj−1 − 1)dcj ...cn−1 + (dcj ...cn−1 − 1)

⇐⇒ ci−1...cj−1 − 1
∣∣ dcj ...cn−1 − 1

We have hence reduced the problem to showing that we can find positive integers d, c1, ..., cn−1 > 1
such that for all 1 ≤ i ≤ j ≤ n − 1, ci...cj − 1

∣∣ dcj+1...cn−1 − 1 (where we shifted i, j by one here
to simplify notation). We do this by induction on n.

n = 2: Only need c1 − 1
∣∣ d− 1, so c1 = 2 and any d works.

n → n+ 1: Assume we have already picked c1, ..., cn−1 by induction. Then set

cn = 1 +
∏

1≤i≤j≤n−1

(ci...cj − 1)

so that cn ≡ 1 modulo ci...cj − 1 for all 1 ≤ i ≤ j ≤ n − 1. Note that ci ≥ 2 for
i = 1, 2, ..., n− 1, so get cn ≥ 2 as well. Now, for 1 ≤ i ≤ j ≤ n, considering dcj+1...cn − 1
modulo ci...cj − 1 we get that for any d

dcj+1...cn − 1 ≡ dcj+1...cn−1 − 1

≡ dcj+1...cn−2 − 1

...

≡ d− 1

using that cj+1, ..., cn are all congruent to 1 mod ci...cj − 1, by construction. Hence we
just need to pick

d = 1 +
∏

1≤i≤j≤n

(ci...cj − 1)

and we are done.
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Problem 9

Let α > 1 be an irrational number and let n be a positive integer. Consider the set

S = {⌊α⌋, ⌊2α⌋, ⌊3α⌋, ...}.

Show that there exists an integer M such that S does not contain any arithmetic progression of
length M with common difference n.

Solution 1

We start with a well-known lemma (known as Beatty’s theorem).

Lemma (Beatty’s Theorem). Given two irrational numbers α, β such that 1
α + 1

β = 1, the two

sets A = {⌊α⌋ , ⌊2α⌋ , ⌊3α⌋ , ...} and {⌊β⌋ , ⌊2β⌋ , ⌊3β⌋ , ...} partition the natural numbers.
Proof: We need to prove that every natural number n is in either A and B, and that no n is in
both A and B:

• If n is in both A and B, there exist k,m such that

n < kα < n+ 1 n < mβ < n+ 1

where the inequalities are strict since α, β are irrational. After dividing the inequalities by α
and β respectively and summing, we get

n < k +m < n+ 1

using that 1
α + 1

β = 1. This gives a contradiction, since there can’t be an integer between n
and n+ 1.

• If n is in neither A nor B, there exist k,m such that

kα < n < n+ 1 < (k + 1)α mβ < n < n+ 1 < (m+ 1)β

where the inequalities are strict since α, β irrational. After dividing the inequalities by α and
β respectively and summing, we get

k +m < n < n+ 1 < k +m+ 2

using that 1
α + 1

β = 1. This gives a contradiction, since there can’t be two integers between
k +m and k +m+ 2.

Let β = α
α−1 . Then the set S′ = {⌊β⌋, ⌊2β⌋, ⌊3β⌋, ...} = N \ S by the lemma. Hence showing that

there is an integer M for which S does not contain any arithmetic progression of length M with
common difference n is equivalent to showing that for large enough M , every arithmetic sequence
of length M and common difference n has some element in S′. We now prove this claim.

Consider n, 2n, ..., ⌈β⌉n. By the pigeonhole principle, two of them are within distance 1 from each
other modulo β (since there are > β elements), i.e ∃ k,m ∈ {1, ..., ⌈β⌉} and ϵ ∈ (0, 1) such that

kn−mn ≡ ϵ (mod β) =⇒ |k −m| = r ∈ {1, 2, ..., ⌈β⌉} : rn ≡ ±ϵ (mod β)

Now, for any a ∈ N, consider the arithmetic progression

a, a+ rn, a+ 2rn, ..., a+

⌈
β

ϵ

⌉
rn

Since rn ≡ ±ϵ (mod β), we are making “jumps” of size ϵ modulo β, and so after ⌈β
ϵ ⌉ jumps we went

one “lap” modulo β. But we also know that |ϵ| < 1, and so after “one lap mod β” we must have hit
a point δ ∈ (−1, 0) mod β, i.e we have some s ∈ {0, 1, ..., ⌈β

ϵ ⌉} such that

a+ srn ≡ δ (mod β) =⇒ a+ srn = kβ + δ for some k ∈ N =⇒ a+ srn = ⌊kβ⌋ ∈ S′

But sr ≤ ⌈β
ϵ ⌉ · ⌈β⌉, where ϵ depends only on n (it’s independent of a). Hence any arithmetic pro-

gression of length > ⌈β
ϵ ⌉ · ⌈β⌉ and common difference n contains an element in S′. So we are done.

14



Solution 2

It’s also possible to prove it directly.

The main idea is similar to the end of the previous proof. For every ϵ > 0, there must exist some
r ∈ {1, 2, ..., ⌈α

ϵ ⌉} and δ ∈ (0, ϵ] such that rn ≡ ±δ (mod α), by the pigeonhole principle (similar
reasoning to above).

Next consider the arithmetic progression a, a+ rn, a+ 2rn, ..., a+ ⌈α
δ ⌉rn. Since rn ≡ ±δ (mod α),

we are making “jumps” of size δ modulo α, and so after ⌈α
δ ⌉ jumps we went one “lap” modulo α.

But we also know that |δ| < ϵ, and so after “one lap mod α” we must have hit a point γ ∈ (0, ϵ)
mod α, i.e we have some s ∈ {0, 1, ..., ⌈α

δ ⌉} such that

a+ srn ≡ γ (mod α) =⇒ a+ srn = kα+ γ for some k ∈ N

If we pick ϵ < α− 1, we get that γ ∈ (0, α− 1), giving that

a+ srn = kα+ γ < (k + 1)α− 1 =⇒ ⌊kα⌋ < a+ srn < ⌊(k + 1)α⌋ =⇒ a+ srn ̸∈ S

But sr ≤ ⌈α
δ ⌉·⌈

α
ϵ ⌉, where we can pick ϵ = α−1 and δ then only depends on n and α (it’s independent

of a). Hence no arithmetic progression of length > ⌈α
δ ⌉·⌈

α
α−1⌉ and common difference n is contained

entirely in S.
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Problem 10

Let △PQR be a triangle, and let its incircle ω touch the sides in the points A,B and C respectively
(where A is on PQ, B is on PR and C is on QR). Let X be the midpoint of the arc BC that doesn’t
contain A. Let the lines PX,QX intersect the lines AB,AC in the points M and N , respectively.
Show that the circumcircle of AMN is tangent to ω.

Solution
We first note that the claim is equivalent to proving that there exists a homothety centered at A
which takes the circle (AMN) to the circle (ABC). This is in turn equivalent to showing that
|BA|
|MA| =

|CA|
|NA| which is equivalent to showing

|BM |
|MA|

=
|CN |
|NA|

using that |BA| = |BM |+ |MA| and |CA| = |CN |+ |NA|.

C

B

AP Q

R

X

M

N

Using part (b) of the lemma below for △XBA and △XCA, we get

|BM |
|MA|

=

(
|XB|
|XA|

)2

and
|CN |
|NA|

=

(
|XC|
|XA|

)2

so using that |XB| = |XC| (given in the problem statement), we are done!

It remains to show the following (well-known) lemma about symmedians:

Lemma: Given a triangle ABC, let X be the intersection
between the tangents to (ABC) at B and C respectively. Let
AX intersect BC in the point D. Then

(a) The line AX is the symmedian from A in the triangle
ABC (meaning it’s the reflection of the median in the
angle bisector).

(b) We have that |BD|
|DC| =

(
|AB|
|AC|

)2
.

Proof: Let T be the (second) intersection of AX with the
circumcircle. Let M ′ be a point on BC such that AM ′ is the
reflection of AX in the angle bisector from A. For (a), it’s
enough to show that M ′ is the midpoint of BC. Note that

|AM ′|
|M ′C|

=
|AB|
|BT |

=
|AX|
|BX|

=
|AX|
|CX|

=
|AC|
|CT |

=
|AM ′|
|M ′B|

where we have used (in order) that △ACM ′ ∼ △ATB (as ∠CAM ′ = ∠TAB by construction of M ′

and ∠ATB = ∠ACM ′ by inscribed angle theorem), △XBA ∼ △XTB (as ∠XAB = ∠XBT since
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XB is a tangent), |BX| = |CX| (again since they are tangents) and then analogous statements to
the first two steps in the last two steps. It follows that M ′ is the midpoint of BC, so we have proven
(a).

Now (b) follows from:

|BD|
|DC|

=
|BD|
|DC|

· |BM ′|
|M ′C|

=
|BD|
|M ′C|

· |BM ′|
|DC|

=
|AB|/sin(∠BDA)

|AC|/sin(∠CM ′A)
· |AB|/sin(∠BM ′A)

|AC|/sin(∠CDA)
=

(
|AB|
|AC|

)2

where in the first step we used that M ′ is the midpoint of BC, in the third step we used law of sines
in the triangles △ABD,△ACD,△ABM ′ and △ACM ′ (together with noting that the angle from A
to BD is the same as the angle from A to M ′C for the first fraction, and the analogous statement for
BM ′ and DC for the second fraction), and in the final step we used that ∠BDA+ ∠CDA = 180◦

and ∠BM ′A+ ∠CM ′A = 180◦.

Remark: The lemma we used is a well-known lemma about symmedians. Note that property (b) is
a special case of a property which more generally holds for isogonal lines, more precisely that if D
and E lie on BC such that AD and AE are reflections of each other in the bisector from A, then

|BD|
|CD|

· |BE|
|CE|

=

(
|AB|
|AC|

)2

The proof of this is the same that we used.
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Problem 11

Find all positive integer solutions to mn+1 = 2m + n2.

Solution

The only solutions are (m,n) = (2, 2) and (3, 1). It’s easy to check these are solutions, and we show
these are the only ones by splitting into two cases.

Case 1: If n is odd, we get

(m
n+1
2 − n)(m

n+1
2 + n) = 2m

where both factors on the LHS are integers since n is odd. Hence they must both be powers of 2.
But also they differ by 2n, and n is odd, so their difference is even but not divisible by 4. The only
option is then than the smaller one is exactly 2, so we get

m
n+1
2 − n = 2

Clearly if m = 1 we have no solutions, so assume m ≥ 2. Then have

n+ 2 = m
n+1
2 ≥ 2

n+1
2

If n = 5 this is not true, and by induction it doesn’t hold for any larger odd n either, so the only
options left for odd n are n = 1, 3. Only n = 1 gives a solution, namely (m,n) = (3, 1).

Case 2: If n is even, clearly m is even too so we write m = 2k and n = 2αr where r is odd (but k
can be odd or even). Then get

2n+1kn+1 = 2m + 22αr2

If 2α ̸= m, the RHS is divisible by 2 exactly min(m, 2α) times. On the other hand, the LHS is
divisible by 2 at least n + 1 = 2αr + 1 ≥ 2α + 1 > 2α times, where the final inequality follows
by induction on α with base case α = 1. This is a contradiction, so we get 2α = m. Hence
n2 = 22αr2 = 2mr2 ≥ 2m so we get for n ≥ 5

2m + n2 ≤ 2n2 < 2n+1 ≤ mn+1

where the middle inequality follows by induction on n with base case n = 5. It remains to check the
cases n = 2, 4, and only n = 2 gives a solution, namely (m,n) = (2, 2).
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Problem 12

Is it true that for every finite group G there exists a subset of Rn (for some n) whose symmetry
group is isomorphic to G? (The symmetry group of a subset of Rn is the group of isometries sending
the subset to itself).

Solution

By Cayley’s theorem, every finite group is isomorphic to a subgroup of Sn for some n. Hence it’s
enough to consider subgroups of Sn.

Consider the group H of isometries of Rn which permute the coordinates. There is one such isometry
ϕσ for each σ ∈ Sn, and it’s defined by

ϕσ(x1, ..., xn) = (xσ−1(1), ..., xσ−1(n))

These together form a subgroup of isometries of Rn which is isomorphic to Sn (since ϕσϕτ = ϕστ

so σ 7→ ϕσ is a homomorphism from Sn → H, and it has trivial kernel). Hence it’s enough to show
that for every subgroup G ≤ H, there is some subset of Rn whose symmetries are given exactly by
the elements of G (restricted to that subset - a detail we will skip over in the rest of this solution).

Let X be the subset of Rn consisting of the points which have all coordinates equal to 0, except
one coordinate which is 1 (ie the points (1, 0, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, 0, ..., 1)). Clearly all the
isometries in H send X to itself, and so are symmetries of X. Conversely, these are all the symme-
tries of X, since any symmetry of X is a bijection from X to itself, and H contains all bijections
from X to itself. So H ≃ Sn is the symmetry group of X.

Next, let Y = G · (2, 4, ..., 2n) be the set of points that (2, 4, ..., 2n) is sent to by some isometry in G.

We claim that the symmetry group of X ∪ Y is exactly G. Indeed:

• Any symmetry of this set must send X to itself, since the distance between any two points in
X is

√
2 but the distance from a point in Y to any other point in X ∪ Y is at least 2. Hence

any symmetry of X ∪ Y must be a symmetry of X, and so the symmetry group of X ∪ Y is a
subgroup of H.

• Furthermore, every isometry in G sends Y to itself, since any point y ∈ Y is equal to
ϕσ(2, 4, ..., 2n) for some ϕσ ∈ G, and hence for every ϕτ ∈ G we have

ϕτ (y) = ϕτσ(2, 4, ..., 2n) ∈ Y

• No element of H \G sends Y to itself, since every ϕτ ∈ H sends (2, 4, ..., 2n) ∈ Y to a different
point, and so since the points in Y are all images of (2, 4, ..., 2n) under some ϕσ ∈ G, they
can’t also be images under some ϕτ ∈ H \G.

• Finally, no element of G fixes every point of X ∪Y (indeed, no element of H fixes all elements
of X), so all elements of G are genuinely different symmetries even when restricted to X ∪ Y .

We have now established that every symmetry of X ∪ Y is in H, that none is in H \G, that all the
elements of G are symmetries of X ∪ Y , and that none of them become the identity when restricted
to X ∪ Y . Hence the group of symmetries of X ∪ Y is exactly G, so we are done.

Remark 1: Note that we can formulate the above proof by thinking of Sn as acting on Rn by permut-
ing coordinates, instead of immediately switching to the point of view where we talk about isometries
from the start. The argument is exactly the same, but it’s nice noting this analogy. The set Y is
then exactly the orbit of (2, 4, ..., 2n) when acting by G.

Remark 2: The points in X are actually all in an affine subspace of dimension n − 1 (they form a
regular (n− 1)−simplex), so we could have done the same proof in Rn−1 instead. The points would
have to become a bit less explicit though (or have much messier expressions), and it would make it
bit harder to rigorously prove that there is a point y which is not fixed by any of the symmetries of
the simplex (corresponding to (2, 4, ..., 2n) above), although it’s sort of obvious that it exists.
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Problem 13

In the land far, far away two teams are competing - the red team and the blue team. There are
n cities, some pairs of which are connected by roads. In the beginning, the roads don’t belong to
anyone. The teams then take turns picking a road that has not yet been picked, and colour it with
their own colour. The red team makes the first pick.
If at any point it’s possible to travel between any pair of cities only using blue roads, the blue team
wins. If all the roads have been picked (by some team) without the blue team achieving this, the
red team wins.
Prove that the blue team can guarantee a win if and only if it’s possible to split the roads into two
groups, such that within each group it’s possible to travel between any pair of cities.

Solution

We will think of the cities as nodes in a graph, with the roads being edges connecting them. If it’s
possible to get between any pair of nodes only using the edges in a certain group, we say that group
of edges is spanning. A group of edges is (by definition) spanning if the graph with only these edges
is connected. We have two things to show.

The edges can be split into two spanning groups =⇒ Blue can guarantee a win

Assume the edges can be split into two spanning groups. We show by induction on the number of
nodes that the blue team can guarantee a win. In our induction we will allow multiple edges between
the same pair of nodes (this is a more general case, so that’s fine).

Base case: There are n = 2 nodes. The only way in which the edges could be split into two
spanning groups is if there are at least two different edges between the nodes.

In this case the blue team can win: red starts by picking one of the edges, after which blue picks
the other one (and hence ensures that it’s possible to travel between the nodes along a blue edge).

Induction step: By assumption the edges can be split into two spanning groups A and B. The red
team makes the first move. Say they colour an edge xy in group A. The graph that only contains
the edges from group A is connected, so removing the edge xy splits it into at most two different
components - say X is the component containing x and Y is the component containing y. But the
graph containing only the edges from group B is also connected, and must hence contain an edge
connecting a node u ∈ X to a node v ∈ Y (note that X ∪ Y is all of the nodes in the graph).

In the left figure below what has been described so far has been drawn. The solid lines are all the
edges from group A. If the red edge xy is removed, the graph is split into two components X and
Y . Furthermore, there is an edge uv in group B that goes between X and Y (blue dashed line in
the figure).

X Y

x y

u v

u v

uvedge from B

All edges except the blue
dashed are from group A

Now let the blue team pick the edge uv (from B), as seen in the upper right figure above (in which
all edges from A are drawn expect xy, together with one edge uv from B). We can consider u and v
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as one node, remove the edge between them and let the remaining edges that connects one of them
to a third node w instead connect the node uv to the node w (this has been drawn in bottom right
figure above). We then get a graph with n−1 nodes. The edges in group A without xy are spanning
for this new graph, since u was in X and v was in Y . The edges in B are clearly also spanning for
the new graph. In other words, the blue team can win in this graph, by induction. But this means
that blue can play in the original graph such that it’s possible to go from u or v to any node, using
only blue edges. Recall that blue picked the edge uv in their first move, so then it’s possible to get
between any pair of nodes using only blue edges. Hence blue can guarantee a win in the original
graph as well, so we’ve completed the induction.

Blue can guarantee a win =⇒ The edges can be split into two spanning groups

We will show that it’s possible to split the edges into two spanning groups. Let the red team “steal”
the blue teams strategy, in the following way:

1. In the first move they pick any edge.

2. In every subsequent move, they pretend that the first edge they picked has not been picked
yet, and play as the blue team would have played in the corresponding situation (note that
since they pretend that the first move was never made, it will look to them as if they are the
second team to move).

The only thing which could prevent them from playing exactly as the blue team would have played
in the corresponding situation is if they want to pick the first edge again, despite it already having
been picked (they are not allowed to pick it twice). In this case, they can simply pick any other
edge, and in the future pretend that this is the edge that hasn’t been picked yet.

Since the blue team can win (ie guarantee that the edges in their own colour forms a spanning group
when all the edges have been picked), the red team will by copying the blue team’s strategy as
described guarantee that the red edges form a spanning group when all the edges have been picked.
But the blue team can guarantee that the blue edges form a spanning group in the same round of
the game - since this is possible by assumption regardless of how red plays.

We have shown that it’s possible to split the edges in two groups (a red and a blue group) such that
both groups are spanning. Hence we are done.
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Problem 14

An integer n is given and the numbers 1, 2, 3, ..., n are written on the board. Kevin wants to pick k
of them, and erase the rest, in such a way that no sum of some numbers left on the board is a perfect
power. What is the largest k for which he can do this? The organisers don’t know the answer, and
will give points for both upper and lower bounds. The better your bounds are asymptotically, the
more points you get!

A lower bound

For a given prime p, if we pick the numbers p, 2p, 3p, ..., kp such that k(k+1)
2 < p ⇐⇒ k < −1+

√
8p+1

2 ,
every sum of some subset of the numbers is divisible by p, but no sum is divisible by p2. Hence it
can’t be a perfect power.

The largest of the numbers must be smaller than n, so for this to work we want to pick p such that

p ·
⌊
−1 +

√
8p+ 1

2

⌋
≤ n

It’s enough that

p
√
8p+ 1 < 2n ⇐= (p+ 1)3 <

n2

2
⇐= p <

(
n√
2

)2/3

− 1

By Bertrand’s postulate, there is a prime between m and 2m for every m, so we can find a prime

between 1
2

(
n√
2

)2/3
− 1

2 and
(

n√
2

)2/3
− 1, and hence with the above strategy we can always find at

least −1

2
+

√(
n√
2

)2/3

− 3

4


numbers. Asymptotically, this is cn1/3 for some constant c (here we showed that c = 2−1/6 ≈ 0.9
works).
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